Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMJ Glob Health ; 5(10)2020 10.
Article in English | MEDLINE | ID: covidwho-1388494

ABSTRACT

INTRODUCTION: During pandemics, such as the SARS-CoV-2, filtering facepiece respirators plays an essential role in protecting healthcare personnel. The recycling of respirators is possible in case of critical shortage, but it raises the question of the effectiveness of decontamination as well as the performance of the reused respirators. METHOD: Disposable respirators were subjected to ultraviolet germicidal irradiation (UVGI) treatment at single or successive doses of 60 mJ/cm2 after a short drying cycle (30 min, 70°C). The germicidal efficacy of this treatment was tested by spiking respirators with two staphylococcal bacteriophages (vB_HSa_2002 and P66 phages). The respirator performance was investigated by the following parameters: particle penetration (NaCl aerosol, 10-300 nm), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry and mechanical tensile tests. RESULTS: No viable phage particles were recovered from any of the respirators after decontamination (log reduction in virus titre >3), and no reduction in chemical or physical properties (SEM, particle penetrations <5%-6%) were observed. Increasing the UVGI dose 10-fold led to chemical alterations of the respirator filtration media (FTIR) but did not affect the physical properties (particle penetration), which was unaltered even at 3000 mJ/cm2 (50 cycles). When respirators had been used by healthcare workers and undergone decontamination, they had particle penetration significantly greater than never donned respirators. CONCLUSION: This decontamination procedure is an attractive method for respirators in case of shortages during a SARS pandemic. A successful implementation requires a careful design and particle penetration performance control tests over the successive reuse cycles.


Subject(s)
Decontamination/methods , Equipment Contamination/prevention & control , Equipment Reuse , Respiratory Protective Devices , Ultraviolet Rays , Betacoronavirus , COVID-19 , Coronavirus Infections/prevention & control , Equipment Failure Analysis , Humans , Infection Control/methods , Materials Testing , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2
2.
J Occup Environ Hyg ; 18(6): 265-275, 2021 06.
Article in English | MEDLINE | ID: covidwho-1228372

ABSTRACT

The COVID-19 pandemic has caused a high demand for respiratory protection among health care workers in hospitals, especially surgical N95 filtering facepiece respirators (FFRs). To aid in alleviating that demand, a survey of commercially available filter media was conducted to determine whether any could serve as a substitute for an N95 FFR while held in a 3D-printed mask (Stopgap Surgical Face Mask from the NIH 3D Print Exchange). Fourteen filter media types and eight combinations were evaluated for filtration efficiency, breathing resistance (pressure drop), and liquid penetration. Additional testing was conducted to evaluate two filter media disinfection methods in the event that the filters were reused in a hospital setting. Efficiency testing was conducted in accordance with the procedures established for approving an N95 FFR. One apparatus used a filter-holding device and another apparatus employed a manikin head to which the 3D-printed mask could be sealed. The filter media and combinations exhibited collection efficiencies varied between 3.9% and 98.8% when tested with a face velocity comparable to that of a standard N95 FFR at the 85 L min-1 used in the approval procedure. Breathing resistance varied between 10.8 to >637 Pa (1.1 to > 65 mm H2O). When applied to the 3D-printed mask efficiency decreased by an average of 13% and breathing resistance increased 4-fold as a result of the smaller surface area of the filter media when held in that mask compared to that of an N95 FFR. Disinfection by dry heat, even after 25 cycles, did not significantly affect filter efficiency and reduced viral infectivity by > 99.9%. However, 10 cycles of 59% vaporized H2O2 significantly (p < 0.001) reduced filter efficiency of the media tested. Several commercially available filter media were found to be potential replacements for the media used to construct the typical cup-like N95 FFR. However, their use in the 3D-printed mask demonstrated reduced efficiency and increased breathing resistance at 85 L min-1.


Subject(s)
COVID-19/prevention & control , Disinfection/standards , Equipment Contamination/prevention & control , Materials Testing/standards , N95 Respirators/virology , Occupational Exposure/prevention & control , Pandemics/prevention & control , Air Pollutants, Occupational/analysis , Equipment Failure Analysis/statistics & numerical data , Guidelines as Topic , Humans , Inhalation Exposure/analysis , SARS-CoV-2
3.
J Occup Environ Hyg ; 17(11-12): 538-545, 2020.
Article in English | MEDLINE | ID: covidwho-790863

ABSTRACT

Powered air-purifying respirators (PAPRs) that offer protection from particulates are deployed in different workplace environments. Usage of PAPRs by healthcare workers is rapidly increasing; these respirators are often considered the best option in healthcare settings, particularly during public health emergency situations, such as outbreaks of pandemic diseases. At the same time, lack of user training and certain vigorous work activities may lead to a decrease in a respirator's performance. There is a critical need for real-time performance monitoring of respiratory protective devices, including PAPRs. In this effort, a new robust and low-cost real-time performance monitor (RePM) capable of evaluating the protection offered by a PAPR against aerosol particles at a workplace was developed. The new device was evaluated on a manikin and on human subjects against a pair of condensation nuclei counters (P-Trak) used as the reference protection measurement system. The outcome was expressed as a manikin-based protection factor (mPF) and a Simulated Workplace Protection Factor (SWPF) determined while testing on subjects. For the manikin-based testing, the data points collected by the two methods were plotted against each other; a near-perfect correlation was observed with a correlation coefficient of 0.997. This high correlation is particularly remarkable since RePM and condensation particle counter (CPC) measure in different particle size ranges. The data variability increased with increasing mPF. The evaluation on human subjects demonstrated that RePM prototype provided an excellent Sensitivity (96.3% measured on human subjects at a response time of 60 sec) and a Specificity of 100%. The device is believed to be the first of its kind to quantitatively monitor PAPR performance while the wearer is working; it is small, lightweight, and does not interfere with job functions.


Subject(s)
Aerosols/analysis , Equipment Failure Analysis/methods , Respiratory Protective Devices/standards , Manikins , Occupational Exposure/prevention & control , Particle Size , Sensitivity and Specificity , Sodium Chloride/chemistry
4.
S Afr Med J ; 0(0): 13162, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-994170

ABSTRACT

BACKGROUND: Given the global shortage of N95 filtering facepiece respirators (FFP2 in Europe) during the COVID-19 pandemic, KN95 masks (Chinese equivalent of the N95 and FFP2) were imported and distributed in South Africa (SA). However, there are hardly any published independent safety data on KN95 masks. OBJECTIVES: To evaluate the seal, fit and filtration efficiency of several brands of KN95 masks marketed for widespread use in SA healthcare facilities, using standardised testing protocols. METHODS: The verifiability of manufacturer and technical details was first ascertained, followed by evaluation of the number of layers comprising the mask material. The testing protocol involved a directly observed positive and negative pressure user seal check, which if passed was followed by qualitative fit testing (sodium saccharin) in healthy laboratory or healthcare workers. Quantitative fit testing (3M) was used to validate the qualitative fit testing method. The filtration efficacy and integrity of the mask filter material were evaluated using a particle counter-based testing rig utilising aerosolised saline (expressed as filtration efficacy of 0.3 µm particles). Halyard FLUIDSHIELD 3 N95 and 3M 1860 N95 masks were used as controls. RESULTS: Twelve KN95 mask brands (total of 36 masks) were evaluated in 7 participants. The mask type and manufacturing details were printed on only 2/12 brands (17%) as per National Institute of Occupational Safety and Health and European Union regulatory requirements. There was considerable variability in the number of KN95 mask layers (between 3 and 6 layers in the 12 brands evaluated). The seal check pass rate was significantly lower in KN95 compared with N95 masks (1/36 (3%) v. 12/12 (100%); p<0.0001). Modification of the KN95 ear-loop tension using head straps or staples, or improving the facial seal using Micropore 3M tape, enhanced seal test performance in 15/36 KN95 masks evaluated (42%). However, none of these 15 passed downstream qualitative fit testing compared with the control N95 masks (0/15 v. 12/12; p<0.0001). Only 4/8 (50%) of the KN95 brands tested passed the minimum filtration requirements for an N95 mask (suboptimal KN95 filtration efficacy varied from 12% to 78%, compared with 56% for a surgical mask and >99% for the N95 masks at the 0.3 µm particle size). CONCLUSIONS: The KN95 masks tested failed the stipulated safety thresholds associated with protection of healthcare workers against airborne pathogens such as SARS-CoV-2. These preliminary data have implications for the regulation of masks and their distribution to healthcare workers and facilities in SA.


Subject(s)
COVID-19 , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Materials Testing/methods , N95 Respirators/standards , Occupational Exposure/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Equipment Design/methods , Equipment Design/standards , Equipment Failure Analysis , Humans , SARS-CoV-2/isolation & purification , Safety Management/organization & administration , South Africa/epidemiology
5.
PLoS One ; 15(11): e0242304, 2020.
Article in English | MEDLINE | ID: covidwho-926880

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has unveiled widespread shortages of personal protective equipment including N95 respirators. Several centers are developing reusable stop-gap respirators as alternatives to disposable N95 respirators during public health emergencies, using techniques such as 3D-printing, silicone moulding and plastic extrusion. Effective sealing of the mask, combined with respiratory filters should achieve 95% or greater filtration of particles less than 1um. Quantitative fit-testing (QNFT) data from these stop-gap devices has not been published to date. Our team developed one such device, the "SSM", and evaluated it using QNFT. METHODS: Device prototypes were iteratively evaluated for comfort, breathability and communication, by team members wearing them for 15-30min. The fit and seal were assessed by positive and negative pressure user seal checks. The final design was then formally tested by QNFT, according to CSA standard Z94.4-18 in 40 volunteer healthcare providers. An overall fit-factor >100 is the passing threshold. Volunteers were also tested by QNFT on disposable N95 masks which had passed qualitative fit testing (QLFT) by institutional Occupational Health and Safety Department. RESULTS: The SSM scored 3.5/5 and 4/5 for comfort and breathability. The median overall harmonic mean fit-factors of disposable N95 and SSM were 137.9 and 6316.7 respectively. SSM scored significantly higher than disposable respirators in fit-test runs and overall fit-factors (p <0.0001). Overall passing rates in disposable and SSM respirators on QNFT were 65% and 100%. During dynamic runs, passing rates in disposable and SSM respirators were 68.1% and 99.4%; harmonic means were 73.7 and 1643. CONCLUSIONS: We present the design and validation of a reusable N95 stop-gap filtering facepiece respirator that can match existent commercial respirators. This sets a precedence for adoption of novel stop-gap N95 respirators in emergency situations.


Subject(s)
Coronavirus Infections/prevention & control , Equipment Design , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Protective Devices/standards , Adult , Betacoronavirus , COVID-19 , Equipment Failure Analysis , Equipment Reuse , Female , Filtration , Humans , Male , Middle Aged , SARS-CoV-2
6.
J Thromb Thrombolysis ; 51(4): 966-970, 2021 May.
Article in English | MEDLINE | ID: covidwho-834030

ABSTRACT

Coronavirus disease 2019 (COVID-19) appears to be associated with increased arterial and venous thromboembolic disease. These presumed abnormalities in hemostasis have been associated with filter clotting during continuous renal replacement therapy (CRRT). We aimed to characterize the burden of CRRT filter clotting in COVID-19 infection and to describe a CRRT anticoagulation protocol that used anti-factor Xa levels for systemic heparin dosing. Multi-center study of consecutive patients with COVID-19 receiving CRRT. Primary outcome was CRRT filter loss. Sixty-five patients were analyzed, including 17 using an anti-factor Xa protocol to guide systemic heparin dosing. Fifty-four out of 65 patients (83%) lost at least one filter. Median first filter survival time was 6.5 [2.5, 33.5] h. There was no difference in first or second filter loss between the anti-Xa protocol and standard of care anticoagulation groups, however fewer patients lost their third filter in the protocolized group (55% vs. 93%) resulting in a longer median third filter survival time (24 [15.1, 54.2] vs. 17.3 [9.5, 35.1] h, p = 0.04). The rate of CRRT filter loss is high in COVID-19 infection. An anticoagulation protocol using systemic unfractionated heparin, dosed by anti-factor Xa levels is reasonable approach to anticoagulation in this population.


Subject(s)
Biomarkers, Pharmacological/analysis , COVID-19 , Continuous Renal Replacement Therapy , Critical Illness/therapy , Drug Monitoring/methods , Heparin , Micropore Filters/adverse effects , Anticoagulants/administration & dosage , Anticoagulants/adverse effects , Blood Coagulation/drug effects , COVID-19/blood , COVID-19/physiopathology , COVID-19/therapy , Clinical Protocols , Continuous Renal Replacement Therapy/adverse effects , Continuous Renal Replacement Therapy/methods , Dose-Response Relationship, Drug , Equipment Failure Analysis , Factor Xa/analysis , Female , Heparin/administration & dosage , Heparin/adverse effects , Humans , Male , Middle Aged , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL